Documentation of Matlab object FinE10bj

Daniel Barczyk and Matthias Kredler
8 January 2014

1 Description

This object automates many programming steps for finite-difference methods
in continuous-time dynamic programming and differential games. The object is
set up as a structure in Matlab. The structure’s fields contain the information
on the model (such as grids for the state variables, value and policy functions),
and various functions can be carried out on the object (methods, in the language
of object-oriented programming).

The reader should first go at least over the first two example program listed
in Section 1.1 to get acquainted with how the object works in general. Alongside,
one can read the short descriptions of the functions in Section 1. Later on, the
other sections of this documentation document provide more detailed informa-
tion: Section 2 provides an overview of the definitions, notion and assumptions
needed. for example on how numerical derivatives and extrapolations are taken
(Section 3), how the backward and forward operators for are constructed which
are central to the workings of the object (Sections 4 and 5), how value-function
iteration is carried out (Section 5.1) and how densities are mapped forward
(Section 5.2).

1.1 Example programs

The following three folders contain examples that illustrate how to use FinE10bj.
The file .. main.m always contains the main program which calls the other
functions. Starting with the simplest and going to the more elaborate ones, the
examples are:

1. Diffusion: Simple example on how to set up a state-space object for a
stochastic process and how to use it to visualize the evolution of a density
over time (done by GetStatDensity) and to draw a sample path (done by
GetHistory). It also illustrates how to calculate the distribution of hitting
times for a subset of the state space using GetDistHitTimes, which may
be skipped upon first reading.

2. Bewley: Solves a simple Bewley (i.e. consumption-savings) model. It
uses the file BewleyPolicyFct, which calculates the policies for the value-

function-iteration algorithm (ValueFctIter). Also, GetBewleyVGuess is
used to obtain guess for the value function.

3. AltruismUncert: A differential game of two altruistic players under in-
come uncertainty who decide on transfers and savings. Uses AltruismPolicyFct
to obtain equilibria by backward induction, which is performed by ValueFctIter2.
The other m-files starting on Altruism provide more specific (and ad-
vanced) functionalities for the object.

1.2 Fields of the object

See the beginning of FinE10bjSetUp (where the object is set up) for a descrip-
tion of the different fields, their dimensions etc.

1.3 Main functions

The following are the main functions used in the above examples. They are
located in the main folder.

FinElObjSetUp: Sets up the object with the state space.

e ValueFctIter: Several algorithms for value-function iteration. ValueFctIter
needs a function handle (S(1) .PolFctHdl) to obtain optimal policies given
a value function.

e ValueFctIter2: Like ValueFctIter, but allows for a series of pre-runs
with coarser grids.

e GetStatDensity: Calculates the stationary density for a given law of
motion (given in fields S.a, S.s and S.h).

e GetHistory: Gets a sample path/history of the system (should be used
for illustrative purposes, not for simulation).

e GetDistHitTimes: For an arbitrary subset of the state space, this function
obtains the distribution of hitting times (i.e. when the process first hits
this set) for all points in the state space. Section 5.3 explains the maths
used here.

1.4 Other useful functions

The following are other functions provided, some of them used heavily by the
main functions above. They can be found in the main folder.

e GetJac: Calculates numerical first (upward) and second (centered) deriva-
tives and extrapolates the value function outside the grid (mathematical
description in Section 3).

1.5

GetJacCnt: Using the upward derivatives calculated by GetJac, this func-
tion calculates centered first derivatives (mathematical description in Sec-
tion 3).

GetMargDens: Calculates marginal densities for state variables (using the
stationary density calculated by GetStatDensity).

GetMoments: Calculates first and second moments for the distribution of
state variables (using the stationary density calculated by GetStatDensity).

GetUpWindDer: Obtains the derivative of an arbitrary function according
to the upwind principle.

GetUpWindLOM: Obtains the law of motion according to the upwind prin-
ciple.

GetHamMatrix: For a given law of motion, sets up matrices for value-
function iteration and density iterations. Described in Section 4, other
linear operators provided by the object are described in Section 5.

GetDt: Given the matrices set up by GetHamMatrix, obtains a suitable
time interval for value-function or density iteration.

Helper functions

The following are helper functions which are called by the above functions and
are of limited use by themselves. They are located in folder SmallFct.

2

SetUpField: Sets up field in object, called by FinE10bjSetUp.
GetLogGrid: Constructs logarithmic grid.

GetDrawProbDist: Obtains draw from finite-valued probability distribu-
tion.

GetMomentsProbDist: Obtains moments for finite-valued probability dis-
tribution.

GetQuantProbDist: Obtains percentiles for finite-valued probability dis-
tribution.

interpnGen: “Transfers” one function (typically value function) from
coarse grid to a finer one; uses Matlab function interpn.

Definitions, assumptions etc.

Definitions:

x: n-dimensional vector of continuous states with grid sizes I,..., I,
(the corresponding in the object is S(i).xGrid, which gives the values
that variable ¢ takes for each grid point).

e z_;: The (n — 1)-vector of continuous states ezcluding state i.

e y: m-dimensional vector of discrete states with the respective number of
states Ji, ..., (values that variable j takes is in S(j) .xGrid).

e V(t,z,y): value function at time ¢ at point (x,y); the corresponding field
in the object is S(1) .V.val.

e a;(t,x,y): drift of continuous variable z;, i = 1,...,n, at point (x,y) at t.
We write a7 = max{0,a;} and a; = min{0,a;} (object field: S(i).a).

e s;(t,x,y): volatility of variable z; at point (x,y), i = 1,...,n (object field:
S(i).s).

e h;(k,l): transition rate of variable j, j = 1,...,m, from state k to state [,
where k,l € {1,...,J;} (object field: S(i).h). We define h;(k, k) =
— 2125 hj(k,1). This definition helps us in writing the Hamilton-Jacobi-
Bellman equation (HJB) and keeping the code simple.

Assumptions/Requirements:
1. Shocks to the different states are orthogonal to each other.

2. For all j =1,...,m, the transition rates h;(k,[) depend only on state y;,
but not on the other states {z,y_;}. Note that we can always pool any
set of states with dependent transition probabilities into one big state.

Continuous variable i € {1,...,n}, evolves according to the stochastic differen-
tial equation
dwiy = ai(t, ze, y¢)dt + si(t, v, y¢)d B,

where {B; ;}_; are uncorrelated Brownian motions. The following is the continuous-
time HJB:

—Vi(t,z,y) == pV(t,z,y) + FU(¢ +Z aiVi(t,z,y) + L3 (2)Vii(t, 2, y)]+

m M;

+ 3> iy DV 2,y 1), (1)

j=11l=1

where FU(t) is flow utility at ¢ and subscripts to V' denote partial derivatives.

3 Numerical derivatives and extrapolation

We will first describe how numerical derivatives are taken and how extrapolation
beyond the grid boundaries is carried out.

3.1 Numerical derivatives

Denote by & = x; the state variable in one of the continuous dimensions ¢ in
order to save on subscripts. Let (Z1,...,Z,...,Z,) be the grid vector for this
dimension.! Define the upward difference between grid points in the #-dimension
by

A.’fik = .’EkJrl — i’k.

This upward difference put into field S(i) .dx (for dimension k) when the state
space is set up by FinE10bjSetUp.

The centered difference is defined as the average between the upward and
downward difference (put into field S(i) .dxc by FinE10bjSetUp):

A Ty = %(Ai‘k + AZgp_1).

The numerical (upward) first derivatives of function f in the Z-dimension at
(Z,) are
fz(jk) _ f('ik-i-l)) — f(.f?k,)
) Afi’k)

where the dot stands for other dimensions of the state space which are held
constant. For the value function, these numerical derivatives are calculated by
GetJac and recorded in field S(1) .V.jac(:,..,j,1) for player j in dimension .
These are the derivatives used by the value-function-iteration algorithms that
are described below.

The second derivative is calculated using centered differences of the first
derivative (note that the first derivative is a precise estimate of the slope between
grid points, so we should take the distance between the middle points of the
adjacent intervals in the denominator now):

_ fil@n) = fil@r-1,0)

Ac-%k

For the value function, f;; is calculated by GetJac and recorded in S(1) .V.SecDer(..,j,1)
for player j in dimension 4. Second cross derivatives are not calculated.

Finally, we define the centered first derivative as the average between the two
adjacent upward derivatives (these are used by centered-difference algorithms):

fi(c) (Fp,) = fi(@g—1, -)2—|— fi(@r,) '

For the value function, f;) is calculated by GetJacCnt (given upward deriva-
tives in S(1) .V.jac) and recorded in S(1).V.JacCnt(..,j,i) for player j in
dimension i. For the lowest grid point, we set the centered derivative equal to
the upward derivative: f;(c)(#1,-) = fi(#1,-). For the highest grid point, we use
the above formula with an extrapolated value f;(Zy,-), which will be discussed
right now.

IThe object allows for both linearly- and non-linearly-spaced grids. However, we have
found that linear grids yield the most reliable results. This is in line with the literature on
finite-element methods for PDEs, which uses mainly linear grids.

3.2 Extrapolation

Note that the above algorithm leaves us without values for f; at the top grid
point Zy due to differencing (to save on notation, we denote by N = I; the
number of grid points of variable Z). Similarly, we still have no values for f;;
at the top and bottom grid points {Z;,Zy}. We proceed as follows to fill these
gaps.

For the top grid point N we extrapolate the second derivative linearly to
obtain an estimate at the grid boundary (for the bottom Z;, we can proceed
similarly):

fii(En_1,-) = fiil(@Nn_2,") .

AZn_2

fi(@n,) = fii(@N-1,") + AZN_y

=fiii(En_2)

Now, having an estimate for the second derivative on the top of the grid, we
obtain an estimate for the first (upward) derivative leaving the grid:

fi(@n,) = filEn—1,") + fii(@n,) A N.

Again, using this estimate for the first derivative, we can now extrapolate the
function f itself:

f(@ny1,-) = f(@nN,-) + fi(@n,) AT N,

where Z 41 lies outside the grid.

By successively substituting the above expressions into each other, we can
find the following expression for the extrapolated value V(Zy41,-) as a linear
combination of values at the lower grid points:

Vt1 =coVn — V-1 +eoVn_o — c3Vn_s,

where
=14+ ATy ATNATN ATNATN
AZn_1 ATN_1AZN—1 ATN_2AIN—1
_ AZ N ATNATN 1 1
“a= AZn_1 * AN (AifN1 AiﬁNz)
AFNAdN Ay 1 1 1
AZn_o <Ach—1AIfN—1 AZN_1AZN_2 * AZN_2ATN_2
. AZNAZN
2T Nin oAy
JrAizNAC:"NENAiN_l(] 1 _ + _ 1] n _ 1]
ATy _o AN _1ATN_2 AdZN 2ATN_2 Acdn_2ATN_3

ATNAZNATN 1

C3 = o po p
AZN_3AZN_1AZN_7

) ~ 0,
) ~ 4

The closer the grid is to linear, the closer the coefficients are to the estimates
given on the right. The estimates hold with equality in the case of a linear grid.

The coefficients {c}?_; are calculated by FinE1ObjSetUp and recorded
in the object as S(1).c = [cO c1 c2 c3]. They are also inserted into ma-
trix Keztrap by FinE1ObjSetUp.

4 The Hamiltonian as a linear operator

We will now write the Hamiltonian from the HJB as a linear operator on the
vectorized value function. We exclude the flow-utility term F'U because it is
usually not a linear function of V' and is thus calculated separately. Using the
up-wind principle for the first derivatives and centered derivatives for second
derivatives, we obtain

I Ziaf Vix; + Agci,xz — Vi, -) tar V(x;,-) — XS% — Az,)
) n V@@itAz,)=V(e,) V(w,)=V(ei—Azg,)
T ZSZQ Az N Azi 1
o,
+ZZh3 (y;, DV (t, 2, y-1,1).
j=11=1

We see that H is a linear combination of values from V (¢, z,y) that lie in the
vicinity of the current (z,y)-value. We can thus write in matrix form:

vec(H) = Kvec(V),

where vec(V) is the vectorized version of the array V' that contains the value
function on the grid points. K is a square matrix of size ng;s = H;;l N; Hzn:l M;.
The matrix K is a function of the law of motion ({a;, si}i;, {h;}7~,). Note
that K has negative entries on the diagonal and positive entries off the diagonal
and his highly sparse?.

Our goal in the following section is to write a function that returns the
matrix K given the law of motion ({a;,s;}/,, {h; };”:1)

5 Linear operators implemented in FinE10bj

FinE1lObjSetUp and GetHamMatrix construct various linear operators, which
can be used for value-function iteration, density iteration and extrapolation:

o K: ngts X ngts. This is the matrix K defined just above in Section 4.
Used for value-function iteration on the normal, i.e. non-extended, grid (a
backward operation) and for mapping the density forward in time/finding

2L.e. it has many zero entries.

the stationary density (a forward operation). Also used by the Howard
algorithm (i.e. Howard=1) in ValueFctIter and by GetStatDensity.

o Koui: Ngs X Npatses. Like K, but takes in an extended state vector
of size ngasis = [[eg (N; + 1) H;n:l M;. Used for backward operations
like value-function iteration where V is first extrapolated one point out-
side the grid and then these points are used to determine the value of
“jumping outside the grid” (important for stochastic laws of motion in
continuous dimensions). Is used by algorithms Howard=0 and Howard=2
in ValueFctIter.

® Kicpia: NExtsts X Nses. Thought of in a forward sense, this matrix reflects
down the mass from the extra grid points into the top grid points of
the normal grid. The following holds (and is used in GetHamMatrix to
obtain K once K.t has been built):

K= KewtKreflw~

It can be thought of as first sending the mass to the extended grid (K., ,m,
where m is ngytsts X 1) and then reflecting back the mass from the extra
grid points into the regular grid: K, K¢,,m.

T

o Kertend: NExztSts X Nsts- Extends a vector of normal grid size (ngts) to
the extended grid size (ng.ists), putting zeros into the extra grid points.

® Keptrap: MEztSts X NExtSts- Fills the extra grid points by extrapolating
from the four top grid points (see the procedure described in Section 3.2).
Eliminates old values for the extra grid points.

The following variations/combinations are useful:

o KeptrapKestend: NEztSts X Ngts. First extends a function (say V') to the
extended grid, then extrapolates. Is used in ValueFctIter by the algo-
rithms that work on the extended grid.

o K/ ,onai NSts X NExpSts- Shrinks a vector of extended-grid size to normal
size, eliminating the extra fields.
5.1 Value-function iteration

The function ValueFctIter uses the following approximation to iterate back-
ward the HJB given in (1):

V(t— At,-) = FU#)AL + (1 — pAV (L,) + K x V(t,-)At

= FU()At+ [= pIAt+ [+ KAV (2,). 2)
=Hna¢

Note that we can interpret Ha; as defined here in a probabilistic sense: when At
is set small enough, the coefficient on the diagonal multiplying V' (¢, z,y) (which

has the interpretation as the probability of staying in the current state) can be
made non-negative for all grid points (z,y); the coefficients on the neighboring
cells are positive anyway (since Ha; has positive entries off the diagonal). Tt
can be easily checked that the coefficients along rows of Ha; add up to one, so
they may be interpreted as probabilities of jumping to adjacent grid points.?
All value-function-iteration algorithms need a function handle specified in
S(1) .PolFctHdl which calculates optimal policies for the agents and the re-
sulting laws of motion (S.a and S.s) given a value function S(1).V.val.

5.1.1 Non-Howard algorithms

Setting options 0 and 2 in S(1) .options.Howard makes ValueFctIter operate
backward on V' given a guess for the value function in S(1).V.val. Option 0
updates policies each single step to the optimal ones given the current value
function; option 2 keeps one policy for at most S(1) .options.tUpdatePol steps
time units. Both algorithms extrapolate the value function in each iteration
outside the grid for the continuous dimensions and then take the extrapolated
values as the value of jumping outside the grid (i.e. they use K., for updating
and GetJac for extrapolation).

5.1.2 Howard improvement algorithm

For the Howard improvement algorithm, we note that V; = 0 for a stationary
solution V' of the HJB. For given flow utility F'U and a matrix K, the stationary
value function V' solves the linear system

(pI — K)vec(V') = vec(FU),

where I is the ngys X ngts identity matrix. This system is solved for V with
an efficient solver for sparse matrices. Given this solution, optimal policies and
flow utility F'U are then calculated for the next iteration. This option is chosen
by setting S(1) .options.Howard=1.

5.2 Finding the invariant distribution

Again, we use the insight that the Hamiltonian matrix K can be used to con-
struct a transition-probability H on our state-space grid. We use Ha; from (2)
to iterate forward the density n (again, the density is given in its vectorized
form):

Ni4+At = H/Atnt = (I + K/At)nt

We now have to use the transpose (or adjoint) of Ha; instead of Ha; itself. Note
that also in the PDEs arising from stochastic calculus (the HIB and the Kol-
mogorov forward equation), the forward operator is the adjoint of the backward
operator in a functional-analysis sense, so it is not surprising that a transpose

3Note that we could alternatively define Hay = (1 — pAt)I — K and interpret pAt as the
probability of dying and obtaining zero value.

shows up here. The function GetStatDensity iterates forward according to the
above equation until convergence and records the result in S(1) .nStat.

The algorithm uses the matrix K (i.e. S(1).K), which means that mass
jumping outside the state space on the top grid points of continuous dimensions
is immediately reflected back into the the grid. So the grid must be constructed
such that the probability mass reaching these boundaries is negligible.

5.3 Finding the distribution of hitting times for a set D

Starting a diffusion at a point x, we are interested in when the process will first
hit a set D C X (where X is the entire state space). We will study the following
function:

Q(t,x) = Prob(zs4, € D for some 7 € [0,]|z, = z).

On D = X \ D, we can write Q recursively as:

Qo= Qaty o+ QU—AL) f(zrar = Fay = 2)d,
N—— all other paths
paths that hit D within At

where f(:|) gives the conditional density of the stochastic process. For suffi-
ciently low At the probability that the process hits D within At goes to 0, so
for all interior x € D we can write:

Q(t,x) = lim]E[Q(t + At par) |y = a:]

1
At—0

Assuming that @ is twice differentiable, stochastic calculus then implies that
Q(-) must satisfy the following PDE for ¢t < 0 and = ¢ D:

_Qt = AQ7

where A is the infinitesimal generator of the diffusion, which contains first and
second derivatives in x. The following are the boundary conditions for this
PDE:

Q(0,z) =0 for all z ¢ D,
Qt,x)=1 for all t and z € D.

The pdf of hitting times for a fixed x, denote it by ¢(+), may then be obtained
by differentiating @ in the time direction:

q(t,) = Q¢(t,x) = —AQ > 0.

Since the pdf must be non-negative, this implies AQ < 0. For standard Brow-
nian motion, this equation reads as %Qm < 0, which means that @ is concave
in x. Also for different processes and higher dimensions, we will usually ex-
pect concave shapes for). The equation also highlights the connection of the

10

Q-function to the Dirichlet boundary-value problem and the theory of (sub-
)harmonic functions related to stochastic processes?

The function GetDistHitTimes obtains the function @ for arbitrary sets D
numerically and calculates statistics of the hitting-time distribution for all x €
X.

6 Possible extensions

The following are not yet implemented in the object, but may be useful for
future applications:

1. Make it an option which boundaries of continuous dimensions are reflecting
and which are open. Let also lower boundaries be open.

2. Allow for endogenous hazard (jump) rates S(i) .h in discrete dimensions
(so unlike now, those would be allowed to vary across the state space).

4For an excellent treatment of (sub-)harmonic functions in the context of stochastic pro-
cesses, see Oksendal, Stochastic Differential Equations (2003).

11

